Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Indian J Med Res ; 157(4): 293-303, 2023 04.
Article in English | MEDLINE | ID: covidwho-2291929

ABSTRACT

Background & objectives: During the COVID-19 pandemic, the death rate was reportedly 5-8 fold lower in India which is densely populated as compared to less populated western countries. The aim of this study was to investigate whether dietary habits were associated with the variations in COVID-19 severity and deaths between western and Indian population at the nutrigenomics level. Methods: In this study nutrigenomics approach was applied. Blood transcriptome of severe COVID-19 patients from three western countries (showing high fatality) and two datasets from Indian patients were used. Gene set enrichment analyses were performed for pathways, metabolites, nutrients, etc., and compared for western and Indian samples to identify the food- and nutrient-related factors, which may be associated with COVID-19 severity. Data on the daily consumption of twelve key food components across four countries were collected and a correlation between nutrigenomics analyses and per capita daily dietary intake was investigated. Results: Distinct dietary habits of Indians were observed, which may be associated with low death rate from COVID-19. Increased consumption of red meat, dairy products and processed foods by western populations may increase the severity and death rate by activating cytokine storm-related pathways, intussusceptive angiogenesis, hypercapnia and enhancing blood glucose levels due to high contents of sphingolipids, palmitic acid and byproducts such as CO2 and lipopolysaccharide (LPS). Palmitic acid also induces ACE2 expression and increases the infection rate. Coffee and alcohol that are highly consumed in western countries may increase the severity and death rates from COVID-19 by deregulating blood iron, zinc and triglyceride levels. The components of Indian diets maintain high iron and zinc concentrations in blood and rich fibre in their foods may prevent CO2 and LPS-mediated COVID-19 severity. Regular consumption of tea by Indians maintains high high-density lipoprotein (HDL) and low triglyceride in blood as catechins in tea act as natural atorvastatin. Importantly, regular consumption of turmeric in daily food by Indians maintains strong immunity and curcumin in turmeric may prevent pathways and mechanisms associated with SARS-CoV-2 infection and COVID-19 severity and lowered the death rate. Interpretation & conclusions: Our results suggest that Indian food components suppress cytokine storm and various other severity related pathways of COVID-19 and may have a role in lowering severity and death rates from COVID-19 in India as compared to western populations. However, large multi-centered case-control studies are required to support our current findings.


Subject(s)
COVID-19 , Food Ingredients , Humans , Nutrigenomics , Carbon Dioxide , Lipopolysaccharides , Pandemics , Cytokine Release Syndrome , Palmitic Acid , SARS-CoV-2 , Diet/methods , Feeding Behavior , Zinc , Tea , Iron , Triglycerides
2.
Epilepsy Behav Rep ; 21: 100584, 2023.
Article in English | MEDLINE | ID: covidwho-2178118

ABSTRACT

Large scale healthcare data shows that new-onset epilepsy is noted in 0.3 % patients within 6 months of COVID-19 infection. We analyzed diagnostic epilepsy monitoring unit (EMU) evaluations to identify and report such cases. We thoroughly reviewed our EMU database and identified patients having "COVID" or "Corona" virus mention in their medical record from 03/15/2020 to 02/28/2022. Patients with epilepsy prior to COVID infection were excluded. Among 62 patients without prior epilepsy evaluated in the EMU for new-onset spells after confirmed COVID-19 infection, three patients were diagnosed with focal epilepsy. These three women without epilepsy risk factors had seizure onset at the time of, or within one to three months of, COVID-19 diagnosis. Their 3 T MRI imaging was non-lesional but revealed bilateral enlarged perivascular spaces. The video EEG monitoring was consistent with temporal or fronto-temporal lobe epilepsy in all three patients. Two of them developed drug-resistant epilepsy within six months of seizure onset. Our thorough analysis of diagnostic EMU evaluations during the two years of pandemic reveals three cases of post-COVID-19 epilepsy after non-symptomatic to mild disease. Although coincidental epilepsy onset cannot be ruled out, larger multicenter or national database investigations are needed to further analyze the possibility of post-COVID epilepsy.

4.
J Infect Public Health ; 15(7): 781-787, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1895220

ABSTRACT

BACKGROUND: COVID-19 is an infectious disease declared as a global pandemic caused by SARS-CoV-2 virus. Genomic changes in the receptor binding domain (RBD) region of SARS-CoV-2 led to an increased, infectivity in humans through interaction with the angiotensin-converting enzyme2 (ACE2) receptor. Simultaneously, the genetic variants in ACE2 provide an opportunity for SARS-CoV-2 infection and severity. We demonstrate the binding efficiencies of RBDs of SARS-CoV-2 strain with ACE2 variants of the human host. METHODOLOGY: A Total of 615 SARS-CoV-2 genomes were retrieved from repository. Eighteen variations were identified contributing to structural changes in RBD that are distributed in 615 isolates. An analyses of 285 single nucleotide variances at the coding region of the ACE2 receptor showed 34 to be pathogenic. Homology models of 34 ACE2 and 18 RBD structures were constructed with 34 and 18 structural variants, respectively. Protein docking of 612 (34 *18) ACE2-RBD complexes showed variable affinities compared to wildtype Wuhan's and other SARS-CoV-2 RBDs, including Omicron B.1.1.529. Finally, molecular dynamic simulation was performed to determine the stability of the complexes. RESULTS: Among 612, the top 3 complexes showing least binding energy were selected. The ACE2 with rs961360700 variant showed the least binding energy (-895.2 Kcal/mol) on binding with the RBD of Phe160Ser variant compared to Wuhan's RBD complex. Interestingly, the binding energy of RBD of Omicron B.1.1.529 with ACE2 (rs961360700) structure showed least binding energy of -1010 Kcal/mol. Additionally, molecular dynamics showed structure stability for all the analysed complexes with the RMSD (0.22-0.26 nm), RMSF (0.11-0.13 nm), and Rg (2.53-2.56 nm). CONCLUSION: In conclusion, our investigation highlights the clinical variants contributing to structural variants in ACE2 receptors that lead to efficient binding of SARS-CoV-2. Therefore, screening of these ACE2 polymorphisms will help detect COVID-19 risk population so as to provide additional care and for safe management.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensins/metabolism , Humans , Peptidyl-Dipeptidase A/chemistry , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics
5.
Healthcare (Basel) ; 10(4)2022 Mar 22.
Article in English | MEDLINE | ID: covidwho-1809808

ABSTRACT

In this study, we aim to identify predictors of a no-show in neurology clinics at our institution. We conducted a retrospective review of neurology clinics from July 2013 through September 2018. We compared odds ratio of patients who missed appointments (no-show) to those who were present at appointments (show) in terms of age, lead-time, subspecialty, race, gender, quarter of the year, insurance type, and distance from hospital. There were 60,012 (84%) show and 11,166 (16%) no-show patients. With each day increase in lead time, odds of no-show increased by a factor of 1.0019 (p < 0.0001). Odds of no-show were higher in younger (p ≤ 0.0001, OR = 0.49) compared to older (age ≥ 60) patients and in women (p < 0.001, OR = 1.1352) compared to men. They were higher in Black/African American (p < 0.0001, OR = 1.4712) and lower in Asian (p = 0.03, OR = 0.6871) and American Indian/Alaskan Native (p = 0.055, OR = 0.6318) as compared to White/Caucasian. Patients with Medicare (p < 0.0001, OR = 1.5127) and Medicaid (p < 0.0001, OR = 1.3354) had higher odds of no-show compared to other insurance. Young age, female, Black/African American, long lead time to clinic appointments, Medicaid/Medicare insurance, and certain subspecialties (resident and stroke clinics) are associated with high odds of no show. Possible suggested interventions include better communication and flexible appointments for the high-risk groups as well as utilizing telemedicine.

6.
J Adv Pharm Technol Res ; 12(3): 285-290, 2021.
Article in English | MEDLINE | ID: covidwho-1323365

ABSTRACT

More than 111 million people worldwide have been affected by the COVID-19 outbreak caused by SARS-CoV-2. The main therapeutic target of COVID-19 is main protease (Mpro). It plays a key role as an enzyme in the SARS-CoV-2 replication and transcription. In this case, the alpha-mangostin potentially has antiviral activity against Mpro by inhibiting this enzyme. Nevertheless, the alpha-mangostin has low solubility and a lack of information about alpha-mangostin activity against the SARS-CoV-2. The aim of this study is to describe the molecular interactions and identify the pharmacokinetics profile between alpha-mangostin and its derivatives. in silico study was conducted by pharmacokinetics and toxicity prediction, molecular docking simulation, and Lipinski's rule of five. FKS9 has a Gibbs free energy value of-10.5 kcal/mol with an inhibition constant of 36.45 µM and an interaction with amino acid His41 residue. Its human intestinal absorption and Caco-2 values were 95.13% and 47.71% while the plasma protein binding and blood-brain barrier values were 96.66% and 6.99%. FKS9 also has no mutagenic and carcinogenic potential. FKS9 as an alpha-mangostin derivative had the best interaction with the Mpro enzyme and its pharmacokinetic profiles was identified.

8.
Brain Behav Immun Health ; 9: 100172, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-907092

ABSTRACT

BACKGROUND: Corona Virus Disease 2019 (COVID-19) cases continue to increase around the World. Typical symptoms include fever and respiratory illness but a constellation of multisystem involvement including central nervous system (CNS) and peripheral nervous system (PNS) have been reported with COVID-19. Acute ischemic strokes (AIS) have also been reported as a complication. METHODOLOGY: We analyzed patient characteristics, clinical outcomes, laboratory results and imaging results of four patients with COVID-19 who had AIS. RESULTS: All four patients were =< 60 years, had hypoxemic respiratory failure secondary to pneumonia, elevated D-dimer and inflammatory markers. CONCLUSION: Ischemic strokes are known complications in patients with severe COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL